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1. Introduction

The data used in the models are originally from the National Institute of Diabetes and Digestive and Kidney
Diseases. The goal of the dataset was to predict if a patient had diabetes based on a variety of variables. A larger
dataset exists but constraints were created that allowed for smaller datasets. The portion of the data used in this
paper is restricted to patients being female of at least 21 years old and Pima Indian heritage [2].

2. Interpreting the Data

The data is made up of 9 columns, named: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin,
BMI, DiabetesPedigreeFunction, Age, Outcome. The features that are eligible for machine learning models are
all variables except Outcome. I want to be able to predict the Outcome using the remaining 8 features.

• Pregnancies refers to the number of times the subject is pregnant.

• Glucose is the measure of one’s plasma glucose concentration after 2 hours in an oral glucose tolerance
test.

• BloodPressure is the diastolic blood pressure in mm Hg

• SkinThickness is the measure of the thickness of triceps skin fold in millimeters

• Insulin measure after a 2-Hour serum insulin measured in mu U/ml

• BMI is body-mass index in (weight in kg/(height in m)2)

• DiabetesPedigreeFunction is a function which scores likelihood of diabetes based on family history

• Age age in years

Outcome is the class variable (0 or 1) where 268 of 768 are 1, the rest are 0. A 1 suggests that the person
has diabetes, a 0 suggests they do not have diabetes. Since I have classification data I can choose between
multiple models. These models include logistic regression, nearest neighbors, supper vector machines (SVM), and
neural networks. Not every feature is necessarily going to be helpful in the models, so it is important to look at
correlations and descriptive statistics to choose the right features. It is also important to look at the ranges of
the data. Typically, it is helpful to scale data when there are a lot of features or when the features are on very
different scales. Looking at a summary of the data, I can use the ranges as a basis to determine if the data needs
to be scaled.



Just by looking at the means, standard deviation, and min and max, I can tell that the data has a mix of
values, ranges, and dispersion, so it would be smart to scale the data for the models. Additionally, the minimum
for many columns is 0 which seems improbable. Someone cannot have a blood pressure of 0 (unless they are
dead), 0 skin thickness, 0 glucose, etc.. This means that I would have to do some cleaning of the data and remove
false zeros. A scatter plot can also reveal false zeros as seen in Figure 1.

Figure 1: BloodPressure vs. Glucose: We can see that there are multiple data points suggesting that patients
have a blood pressure of 0. This is fairly impossible, therefore the data has false zeros.

Since the data is binary, I plan on doing a SVM and a neural network. To choose what features I want to use
in my SVM model, I can look at the correlation plot in Figure 2.

Figure 2: Correlation Map between all features in the data. BMI and Glucose have the highest correlations with
Outcome.
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Since diabetes is partially determined by one’s blood sugar level, it would be a good idea to use Glucose as a
feature. Furthermore, obese people are prone to diabetes so using the body mass index as a predictor for diabetes
would be useful. Both Glucose and BMI have the highest correlations with Outcome so I will choose these
features for my SVM model.

3. Creating a SVM Model

Similar to a logistic model, I can create a support vector machine (SVM) where the goal of the SVM algorithm
is to find a hyperplane in an N-dimensional space that classifies the data points. There are countless hyperplanes
that could separate the two groups of data. The goal is to find a plane that has the maximum margin between
data points of both classes. This can be visualized in the example in Figure 3. Maximizing the margin distance
provides some reinforcement so that future data points can be classified with more confidence, thus the model is
more generalized.

Figure 3: Sample decision boundary using an SVM model to maximize the margins between the data points and
boundary allowing for greater generalization to new data.

Using Glucose and BMI as my features, I can begin constructing a SVM and eventually train it using my
training dataset. There are three kernels that are used in SVM models, this includes linear, rbf, and polynomial.
The type of kernel used is what effects the decision boundary. For example, Figure 3 has a linear decision bound-
ary from the model’s utilization of a linear kernel. An rbf kernel uses the radial basis function to construct the
boundary between the data classes. A less common kernel is the polynomial which fits a polynomial function as a
decision boundary.

The best model can be found using functions that try a variety of combinations and then measuring which
parameters give the best accuracy. The model is fitted on training data during this time. Parameters that I can
vary include the kernel, C, and gamma. The gamma parameter "defines how far the influence of a single training
example reaches, with low values meaning ‘far’ and high values meaning ‘close’." C parameter trades off correct
classification of training examples against maximization of the decision function’s margin. For larger values of
C, a smaller margin will be accepted if the decision function is better at classifying all training points correctly.
A lower C will encourage a larger margin, therefore a simpler decision function, at the cost of training accuracy.
Essentially, C behaves as a regularization parameter in the SVM. I allowed the model to search over a variety of
C’s and gamma’s using a logistic scale.

My most accurate SVM was a linear kernel, a gamma value of 0.0001 implying the data will vary more
smoothly with landmarks, and a C value of 0.01 suggesting higher regularization leading to possible underfitting.
Interesting enough, I received the same the same accuracy using an rbf kernel with C = 1000, and gamma = 0.01.
A high C suggests low regularization. The models are seen in Figure 4. I received an accuracy of 0.754 on training
data, 0.802 for testing. This low accuracy is not too surprising because we see overlap between the two outcomes,
just by looking at the data it would be impossible to get a decision boundary that extremely accurately separated
the two group.
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Figure 4: Results from SVM model: RBF kernel over training data (top left), Linear kernel over training data
(top right), RBF over testing data (bottom left), Linear over testing data (bottom right)

Since both models gave the same accuracy on testing and accuracy, which model should be chosen? Neither
model looks like it has overfitting or underfitting, so it seems reasonable to use either. However, I would choose
the linear model because it predicts diabetes at higher glucose levels Figure 4. There is a chance that someone
can have a high BMI but not have diabetes, but if you have an abnormally high glucose levels, then you will be
diagnosed with diabetes; this is why I will choose the linear SVM model. Using the linear SVM, I can also look at
a ROC curve to evaluate the quality of the model, Figure 5.

Figure 5: ROC Curve for the linear kernel, gamma = 0.0001, and a C = 0.01

ROC is a probability curve and AUC represents degree or measure of separability, which it shows how well the
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model is able to distinguish between classes. A higher AUC implies that the model is better at predicting true 0s
and 1s. In this case, the higher the AUC, the better the model is at distinguishing between patients with diabetes
and no diabetes. It is okay to receive some false positives, since it would lead to the patient to get additional tests
where they are hopefully diagnosed as healthy. However, false negatives could be very dangerous. If I predicted
a false negative then the patient would miss treatment they might need. Looking at Figure 4, there are many
patients that would be flagged as being non-diabetic when they actually are diabetic. This suggests that other
factors besides glucose and BMI could have an impact on whether someone is diabetic or not. Future models could
use the diabetes pedigree function which is essentially its own model that scores the likelihood of diabetes based
on family history. By incorporating genetics/pedigree into the model, it might be able to distinguish the clusters
of 1s over top of the 0s.

4. Creating a Neural Network

When making the neural network I plan on using all 8 features to predict the outcome. However, if I remove
all rows that have a false zero I narrow down the data greatly, so I will input all the data I have. Furthermore,
for the same reasons as the SVM model, I will scale my data. Since the goal is to predict a binary output, I will
use the relu and sigmoid activation functions because they exist between 0 and 1 (like the Outcome data). For the
MNIST dataset we used a softmax function, however, since I only have two classes (0 and 1s), I should end on a
sigmoid function. The validation accuracy of the untuned neural networked was 0.714, worse than our SVM.

Figure 6: Summary and evaluation of non-turned neural network

I chose to use dense layers because there should be an association between the features, and I used dropout layers
for regularization. Dropout layers can help models avoid overfitting by essentially dropping an input neuron when
training the model [1]. Since I am allowed to control the percentage of the dropout there should not be any harm in
adding it to my model, since parameter tuning could yield a 0 dropout. The dropout rate was partially responsible
for the "jitteriness" of the accuracy curves. Using a very similar model to Figure 6 as the framework for my neural
network, I hypertuned the number of neurons, learning rate, and dropout rate, resulting in Figure 7.
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Figure 7: Summary and evaluation of turned neural network

My first layer had a neuron size of 16, second neuron size was 4, with a dropout rate of 0 and learning rate
of 0.1. This resulted in an accuracy of about .74, there were minor fluctuations between runs. The summary of
the model can be seen in Figure 7. The tuned model produced a smoother looking learning curve and almost has
no underfitting or overfitting since both accuracy’s are similar. Furthermore, the training and testing accuracy’s
nearly converge on top of each other rather than diverge.

5. Conclusion

Both the SVM model and the neural network model predicted whether or not someone has diabetes based on
a variety of features with similar accuracy. The SVM model received an accuracy of 0.802 and my neural network
had an accuracy of .74. Both models have their pros, but with larger data sets the multi-layer neural network
it allows for the easy feeding of features. With SVM models, feature extraction becomes more important rather
than feeding everything into a model. Furthermore, clean data is important in any model. If there was more time,
I would love to play around with the NN and try a variety of neuron sizes and different optimizers, especially if
there was bigger data sets. In addition, it would be interesting to run the NN using warm starts. Overall, I would
take the NN model.
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